

FEED EFFICIENCY OF BEEF CATTLE AND MEASUREMENT TECHNIQUES Webinar – 9th October 2019

Dr Carol-Anne Duthie
Beef and Sheep Research Centre
SRUC

Carol-Anne.Duthie@sruc.ac.uk

Talk outline

- Financial importance of feed efficiency
- Methods of expressing feed efficiency
 - Feed conversion ratio (FCR)
 - Residual feed intake (RFI)
- Feed efficiency protocols equipment and techniques
 - RFI protocols
 - Average Daily Gain (ADG)
 - Feed intake (FI)
 - Body Composition
- Breeding for improved feed efficiency

Economics and feed efficiency

- Provision of feed up to 75% of variable costs
- Improved feed efficiency economic and environmental advantages

Growing and finishing phase:

 1% improvement in feed efficiency has the same economic impact as a 3% increase in rate of gain

Economic benefits of improving feed efficiency

	Comparison	Difference in feed eaten (same gain)	Financial gain	
Stabiliser bulls (UK)	Top ¼ vs Bottom ¼	25%	£92/animal over 205 days	
Simmental bulls (Ireland)	Top 1/3 vs Bottom 1/3	14%	€35/animal over 105 days	
Angus or Hereford bulls (Canada)	Top 1/3 & Bottom 1/3	3.4 kg 'as fed'	C\$47/animal over 140 days	
Charolais x steers (UK)	Top ¼ vs Bottom ¼	28% (3.8 kg Dry Matter)	£85 over 120 days	
Luing steers (UK)	Top ¼ vs Bottom ¼	31% (4.2 kg Dry Matter)	£95 over 150 days	

Large variation and moderate heritability estimates means genetic progress can be made

Talk outline

- Financial importance of feed efficiency
- Methods of expressing feed efficiency
 - Feed conversion ratio (FCR)
 - Residual feed intake (RFI)
- Feed efficiency protocols equipment and techniques
 - RFI protocols
 - Average Daily Gain (ADG)
 - Feed intake (FI)
 - Body Composition
 - Calculations
- Breeding for improved feed efficiency

Traditional measures of feed efficiency

- Feed conversion ratio = intake / growth
 - Economic representation of a cost of production
- Feed conversion efficiency = growth / intake
 - Representation of the efficiency of a biological process
- 5 3.75 1.8 1.7 1.25

UNITS OF FEED IT TAKES TO PRODUCE 1 UNIT OF MEAT

- Considerable genetic progress with monogastrics using FCR
- Monogastrics lower FCR than ruminants (MORE efficient)
- Best measure in ruminants has sparked considerable debate
- Some antagonistic relationships with important production traits...

Breeding for FCR?

Strong negative correlations with ADG, mature size

- Selection for FCR will indirectly:
 - Increase genetic merit for growth (increase ADG)
 - Increase cow mature size
 - Increased maintenance requirements
 - Higher feed requirements and intake
 - Increase feed costs for the herd
 - Increased environmental impact!

Selection needs a measure independent to key production traits

Residual Feed Intake?

Residual Feed Intake – what is it?

- RFI it is a biological measure of feed use efficiency
 - Koch et al., 1963; more interest since 90's

Net Feed Efficiency (NFE); Net feed intake (NFI); Residual Feed Intake (RFI) – THE SAME TRAIT!

RFI is one that scales feed intake to:

- the size of the animal (metabolic LW)
- its rate of growth (DLWG)
- its degree of carcass fatness (fat depth by ultrasound)
- RFI is a measure of feed efficiency derived "NET" for any:given unit of animal size (kg); growth rate (kg/d) or carcass
 fat levels (mm)

Different expressions of feed efficiency

RFI = ACTUAL DMI (A_DMI) - PREDICTED DMI

Predicted DMI - linear regression of actual DMI on ADG, MMLW + FD

Trait	Definition / calculation			
FCR	FCR = DMI / ADG			
RFI1	RFI1 = A_DMI-(β 0 + (β 1 × ADG) + (β 2 × MMWT))			
RFI2	RFI2 = A_DMI-(β 0 + (β 1 × ADG) + (β 2 × MMWT) + (β 3 × FAT))			
RFI3	RFI3 = A_DMI-(β 0 + (β 1 × ADG) + (β 2 × MMWT) + (β 3 × FAT) + (β 4 × REA))			

If predicted intake is 10kg; and actual intake 8kg 8-10 = -2 kg/d - VE RFI - EFFICIENT!

Different expressions of feed efficiency

- Efficient animals eat less than expected (<u>negative RFI</u>)
- Inefficient animals eat more than expected (positive RFI)

UK Stabiliser bulls - RFI results

NB: @ feed cost of £155/t DM

- 12 weeks on Wold farm NFE test

2.00					
2.50	Stabiliser Bull	Low RFI	Mid RFI	High RFI	
	Mean LW (kg)	591	575	579	
	ADG (kg/d)	1.76	1.66	1.73	
	Fat depth (mm)	5.4	4.9	5.4	
	DMI (kg/d)	10.8	11.2	12.4	
	FCR (DMI:LWG)	6.2	6.9	7.2	
	RFI (kg/d)	-0.89	0.01	+0.92	
	Cost deviation from average	-£5	0	+16	

- Independent of growth and body size (and composition)
- *Not antagonistically associated with desirable production traits

ANY QUESTIONS?

Talk outline

- Financial importance of feed efficiency
- Methods of expressing feed efficiency
 - Feed conversion ratio (FCR)
 - Residual feed intake (RFI)
- Feed efficiency protocols equipment and techniques
 - RFI protocols
 - Average Daily Gain (ADG)
 - Feed intake (FI)
 - Body Composition
- Breeding for improved feed efficiency

How do we measure feed efficiency?

Measure inputs

- Feed intake (Individual)
- Feed composition and quality

Measure outputs

- Liveweight, Average Daily Gain
- Body composition
 - Fat Depth (FD), Muscle Depth (MD)
- Accuracy in measurements is essential

Protocols for measuring residual feed intake

Key things to consider:

- Adaptation period
- Test period length
- Measuring ADG and tools/technologies available
- Measuring individual FI and tools/technologies available
- Measuring body composition (fat and muscle depth)
- Calculating efficiency

Phases of RFI testing

ADAPTATION

TEST PERIOD

- Min. 21 days
- 28 days preferred
- Adapt to facility
- Adapt to diet
- Training to use "tech"
- Data NOT used in calculating RFI

- Test length varies
- Data recording:
 - Feed intake (indiv.)
 - Feed composition
 - LW (indiv.)
 - Body composition (MD/FD)
- Data used in calculating RFI

- Data collation
- Data checking
- Feed analyses:
 - Chemical/DM
- Calculations:
 - ADG
 - DMI
 - RFI / FCR

Test period - length

- No defined "standard"
- Typically: 70 days; weights every 2 weeks
- Recognised that increased frequency of weighing = shorter test period; reduced cost
- Frequency of LW important in defining test length
- Start and end of test is <u>not adequate</u> for ADG calculation
- Note: ICAR guidelines recommend 60 days test period (<u>https://www.icar.org/Guidelines/03-Beef-Cattle-recording.pdf</u>)

LW data frequency	Length of test (days)			
Weekly	56			
Every 2 weeks	70			
Every 3 or 4 weeks	112			

Alternative test lengths - ADG accuracy

Finishing steers; Weekly LW; 56-84 day test lengths

	84	77	70	63	56	s.e.d.	Sig.
R ²	95.6ª	94.8 ^b	93.8°	92.7 ^d	92.4 ^d	0.339	*
ADG (slope)	1.19ª	1.18ª	1.19ª	1.20ª	1.25 ^b	0.013	***
s.e. of LWG	0.070 ^a	0.079 ^b	0.092 ^c	0.105°	0.120 ^e	0.0028	**
Error bound (%)	12 ^a	13.7 ^b	15.6 ^c	17.9 ^d	19.4 ^e	0.499	**

- R² > 90% and error bound < 20%
- Test length of 56 days adequate with weekly recording

Hyslop et al., 2012. Proc. British Society of Animal Science Conf.

Good vs. bad example of LW data

- Good fit
 - Robust data
 - $R^2 > 0.90$

- Poor fit
- Remove data
- Warrants investigation
- Data input error?
- Underlying health issue?

Mid-test Metabolic LW (MMLW)

Improving accuracy of ADG estimation

- Increased LW data points
- Regular calibration/checking

- Use of new automated tools:
 - Fully automated in-pen crate (e.g. BEEF MONITOR)
 - Fully automated partial weigh scales (e.g. GROWSAFE)

AUTOMATED WEIGH PLATFORM – UK EXAMPLE

- SR1
- Fully automated weight platform
- Integrated water trough
- Low frequency EID
- Every visit to trough
 - recorded weight
- Multiple weights per day
- Accurate ADG calculations
- No handling
- Automatically sent to cloud
- "user-friendly" APP.
- Min 1 month data required

Other systems for automated LW recording

- Measure full or partial body weight (PBW)
- Weight platform integrated with feed or water station
- Electronic identification
 - ear tag / collar
- Manufacturers:
 - Growsafe (Canada)
 - Biocontrol (Norway)
 - HokoFarm Group (The Netherlands)

https://growsafe.com/our-platform/

Feed intake recording

- Feed apportioned based on group recording not sufficient
 - large variation and inaccurate
- FI can be obtained when individual feed intake data is recorded for a minimum 45 days
 - less than required for accurate measure of ADG
- Tests need to be longer than this to achieve 45 days of good data
 - accommodate computer and equipment malfunctions
 - measurement days (e.g. fat depth measures, weighings)
 - disturbances in the pen (bedding, visits, maintenance)

Technology advances – feed intake recording

- Advances in technology since 1990's
- Individual feed intake measurement at large scale
 - Fully automated and electronic feed intake bins
 - Large quantity of data feeding behaviour and intake
 - Many different commercially available examples

Example system – HOKO farm group

EID reader

Photoelectric reflective sensor

Entry door

EID Tag

Weigh cells

Practical limitations of feed intake recording systems

- Some practical limitations:
 - Not high throughput each unit serves ~3 animals

Key things to consider

- Feed should be provided ad libitum
 - Avoid data bias due to restricted access to feed
 - Stocking density based on manufacturer recommendations
 - Facilitate normal unrestricted feeding behaviour
- Examples of instances where feeding may be restricted:
 - Removal from pen maintenance; equipment failure, sickness, collection of related data (e.g. US fat depth)
- Feed provision should include 5% more than requirements
- Feed intake data on days where animals do not have ad libitum access to feed should <u>not</u> be used in computing daily feed intake

Bedding material is important

Straw bedding

Sawdust

Dry matter intake (DMI)

- Average daily intake should be reported on a DM basis
- Removes variability in moisture content across diets
- Increases comparability across tests / studies
- Diet characteristics:
 - Ingredient composition daily
 - Daily samples of diet / ingredients
 - Chemical composition (inc. DM content)

Measuring body composition

Adaptation

Test Period

Fat Depth

Muscle Depth

- Differences in FD = 5-9% of variation in DMI
- "real-time ultrasound"
- End of test to ensure phenotypic variation
 FD
- Enables composition of LWG to be incorporated into RFI model
- Guidelines established by breed society

ANY QUESTIONS?

Talk outline

- Financial importance of feed efficiency
- Methods of expressing feed efficiency
 - Feed conversion ratio (FCR)
 - Residual feed intake (RFI)
- Feed efficiency protocols equipment and techniques
 - RFI protocols
 - Average Daily Gain (ADG)
 - Feed intake (FI)
 - Body Composition
- Breeding for improved feed efficiency

Selection for RFI

RFI – better as a genetic improvement tool than FCR

Significant animal-animal variation in RFI exists in beef:

- huge scope for genetic improvement
- moderately heritable genetic progress can be achieved 0.16-0.44

Independent to performance traits

- Attractive for breeders
- Easily incorporated into selection index
- FCR negative association with performance (e.g. mature size and ADG)

Outcome of selection for RFI

Selection for RFI should:

- Produce animals that are more biologically and economically efficient
- Result in animals which consume less feed for the same output
- Result in reduced methane per kg product
- Economic benefits (reduced feed costs)

Selection for RFI should not affect:

- Mature cow weight
- Carcass quality
- Meat quality
- Reproduction and fertility traits

Where are was as an industry?

Progress slow

- Cost / availability of facilities for feed intake recording largest barrier
- Capital cost and upkeep of equipment limited to research units until recently
- Commercial testing stations are evolving will accelerate progress

Vital:

- Technology developments
- Access to feed testing stations

Industry drive and awareness spreading rapidly!!

International activity

- Extensive international research activity
 - Australia, Canada, USA, Ireland, UK
- No clear agreement on which measure of feed efficiency should be used:
- Use of RFI (or NFI) most common (Australia, Canada, UK)
- Generating EBV's for feed intake and incorporating into multi-trait selection index becoming more popular (Ireland, USA)
- Common challenge industry uptake
- Most success achieved through industry collaborations, using commercial testing stations

Lessons learned

- Involvement of industry from outset is key:
 - Breed societies drive momentum and uptake
 - Commercial testing stations to achieve industry buy-in and facilitate continued recording
 - Co-funding (public and industry co-funding)
- Establishment of agreed industry standards for recording important
- Agreed protocols to reflect common industry management practices – important to ease recording
- Demonstration of value of selection and genetic improvement important to achieve industry buy-in

UK – Stabilisers – ww.bigbeef.co.uk

- Large industry led project "IMPROBEEF"
- Commenced 2011
- Established first commercial facility for feed intake recording

EBV's now up and running

- Limousin and Aberdeen Angus
 - 2500 records collected so far...
- Research and commercial testing stations
- Industry collaborations
- Genetic parameters estimated:
 - RFI ($h^2 0.23$) and production traits
- Updated breeding objective, refreshed economic weights for current and new (terminal) traits (daily feed intake)

THANK YOU!

For Higher and Further Education 2017

Leading the way in Agriculture and Rural Research, Education and Consulting