## **SmartCow**

an integrated infrastructure for increased research capability and innovation in the European cattle sector

## **Proxies to predict**

## feed efficiency and its determinants in cattle

C. Martin, G. Cantalapiedra-Hijar, D. Andueza, A. Vanlierde, F. Dehareng

**INRAE - CRAW** 

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Grant Agreement n°730924

Copyright © 2018, SmartCow Consortium

6 April 2022, Brussels

### Global objective

- To reduce constraints on experimental animals (3Rs rules) in research infrastructures (RIs)
- To strengthen cattle phenotyping capacity for large scale studies
- To find alternative methods to estimate key phenotypes measured with gold standard method (GSM)



➤ To evaluate proxies\* of feed efficiency and its determinants in dairy & beef cattle across diets and individuals



<sup>\*</sup>defined as indicators measurable in easily accessible matrices, and easier to implement than the GSM

## **Strategy**

•To build a large and representative database with individual observations [phenotypes + proxies] for beef & dairy cattle

- To share data (samples) among SmartCow collaborators
  - > SRUC, UREAD, AU, CRA-W, INRAE, FBN Leibniz, IRTA, WUR
  - > TNA applicants (including private companies)
  - > Agroscope, Luke





## Which proxies for which phenotypes?





#### **PHENOTYPES**

#### **PROXIES**

- Feed efficiency
- □ N use efficiency & N excretion □
- □ Total tract OM digestibility
- □ CH<sub>4</sub> emission
- ☐ Rumen parameters (VFA, ammonia, pH)





- **Urea-N**
- **Near-infrared spectra (NIRS)**
- Mid-infrared spectra (MIRS)
- **Blood** metabolites
- Volatile metabolome













## Proxies to predict Feed efficiency in beef cattle

Feed Conversion
Efficiency (FCE)

Residual Feed Intake (RFI)

INDIVIDITAL INTAKE



**BODY WEIGHT GAIN** 





# 15N abundance Urea-N





## Proxies to predict Feed efficiency (FCE, RFI) in beef cattle Better models with Δ¹⁵N compared to plasma urea





#### Dietary means





## Proxies to predict Feed Efficiency (FCE, RFI) in beef cattle Δ¹5N allows to discriminate individuals





The minimum detectable difference in FCE between 2 individuals from <sup>15</sup>N values was almost 0.06 kg/kg => too high for assisting genetic selection Mean difference in FCE, between 2 groups formed from <sup>15</sup>N values, was significant and around 0.03 kg/kg => for precision feeding?



#### Proxies to predict Total tract digestibility in cattle

OM digestibility (OMD) = (ingested-excreted) ingested









#### **Faeces NIRS**





#### Proxies to predict Total tract digestibility in cattle





#### **Smartcow calibration model**



#### Validation dataset



- ➤ Minimum DD (6.4%) is close to that of GSM (5.2%)
- Good potential of fecal NIRS as proxy for OMD prediction in cattle
- Good alternative to GSM (stalls)



## Proxies to predict daily CH<sub>4</sub> emissions in dairy cows











#### Milk MIRS





#### Proxies to predict daily CH<sub>4</sub> emissions in dairy cows Model based on milk MIRS : validation and next steps



#### **Existing predictive model**

Vanlierde et al, 2021 (JSFA)



- Good potential of milk MIRS as proxy for CH<sub>4</sub>
- ➤ High throughput approach allows CH<sub>4</sub> phenotype to be incorporated in dairy cow breeding programs

#### Validation dataset

FBN and WUR data



#### Next steps

- To include Ref data not yet represented
- Not possible to merge GF data with other Ref datasets (RC, SF<sub>6</sub>) → noise in the model
- A specific model based on GF values is on progress

## Proxies to predict daily CH<sub>4</sub> emissions in cattle



CH<sub>4</sub> EMISSIONS







#### **Faeces NIRS**





#### Proxies to predict daily CH<sub>4</sub> emissions in cattle

#### **Faecal NIRS: an innovative proxy**





- > A good example of complementary dataset
  - BE -> Belgian Blue; grass, grass silage
  - FR -> Charolaise; grass, grass silage
  - CH -> Simmental Angus Limousine; corn silage
- > Promising proxy especially for an indirect proxy
- ➤ **Useful for non-lactating cattle :** beef, calf heifers, dry dairy cows
- ➤ More Ref data not yet represented are needed
  - Other breeds, diets, physiological status, etc.
  - Standardized protocols for sampling and dataset management



### **Impact**

- **For RI:** improvement of the cattle phenotyping capacity while implementing 3Rs principles & research recommendations
- -> instructions for using proxies according to common and standardized protocols / open access guidelines





#### For stakeholders:

- > Academic : production of knowledge (publications) and innovating concepts to test in pilot studies
- Industry : development of phenotyping tools for feed and breeding industry



#### **Future prospects**

- To enlarge diversity of the reference databases to update models following research recommendations
- To continue investigating new proxies and their combinaison to improve predictions
- Adoption and implementation of these research proxies by the different actors of the livestock production

Key of success : collaboration network / common guidelines for measurements and data recording

## Thank you for your attention





#### First-class Cattle Research Infrastructures (RIs) across Europe:

- 11 major RIs distributed in 7 EU countries
- 12 locations, which include 18 installations
- 2500 dairy and 1000 beef cows
- **Networking of RIs** to inventorize resources, harmonize procedures, and share data
- **Joint research activities** to improve experimental methods and phenotyping capability
- **Interaction with stakeholders** to stay in line with industry needs and improve dissemination

http://www.smartcow.eu/stakeholders/

#### TRAINING PROGRAM

For Scientists, Technicians, Stakeholders, PhD students

- Face-to-face training courses
- Free web-conferences
- One-day study tours in 4 different countries

http://www.smartcow.eu/resources/training/

#### TRANSNATIONAL ACCESS CALLS

Offers external users (academic and industry) free access to SmartCow RIs

- 30 projects during the 4 years of SmartCow
- Access to around 10,000 cow-weeks

http://www.smartcow.eu/calls/



This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Grant Agreement n°730924.

**SmartCow** 

### **Questions**



Donato ANDUEZA: donato.andueza@inrae.fr

Gonzalo CANTALAPIEDRA: gonzalo.Cantalapiedra@inrae.fr

Frédéric DEHARENG: <u>f.dehareng@cra.wallonie.be</u>

Cécile MARTIN: <u>cecile.martin@inrae.fr</u>

Amélie VANLIERDE: a.vanlierde@cra.wallonie.be

