

Feed efficiency and proxies

Smartcow study tour - 5th March 2019 SRUC Beef Research Centre – Easter Howgate

Dr. Jenna Bowen
Prof. Richard Dewhurst

Breakdown of variable costs

- Upland suckler cow and calf (late Spring calving) feed is £210 of total £352 variable costs [60%]
- Barley finishing at 12 months feed is £295 of total £392 variable costs
 [75%]
- Finishing autumn-born suckled calf at 18 months feed is £163 of total £ 272 variable costs [60%]
- Grass finishing feed is £87 of total £150 variable costs [58%]

Farm Management Handbook 2016/17

Feed efficiency in beef systems

- Feed conversion ratio (FCR)
- Residual feed intake (RFI)

Economic benefits

	Comparison	Difference in feed eaten (same gain)	Financial gain
Stabiliser bulls (UK)	Top vs Bottom	25%	£92/animal over 205 days
Simmental bulls (Ireland)	Top ⅓ vs Bottom ⅓	14%	€35/animal over 105 days
Angus or Hereford bulls (Canada)	Top ⅓ & Bottom ⅓	3.4 kg 'as fed'	C\$47/animal over 140 days
CH/CHx steers – high concs (SRUC)	Top vs Bottom	28% (3.8 kg Dry Matter)	£85 over 120 days
Luing steers – high forage (SRUC)	Top vs Bottom	31% (4.2 kg Dry Matter)	£95 over 150 days

Selection for RFI

Significant animal-animal variation in RFI exists in beef:

- huge scope for genetic improvement
- independent to many performance traits

Selection for RFI should:

- Result in animals which consume less feed for the same output (economic benefits)
- Result in reduced methane per kg product

Efficiency in beef production

How do we measure it in an R&D sense?

Measure inputs

feed intake (facilities here)

Measure outputs

LWG, carcass weight/yield & quality

Accuracy in measurements is essential

Across different breeds and feeding systems

Why? - More profit & lower environmental impact / kg beef

Feed Intake and Performance 2011 - 2019

SRUC

Red indicates RESAS co-funded

				DITOC
	Experiment	Breeds	Diets	Year
	Beef finishing study	AAx & LIMx	Concentrate vs. Mixed	2011
	Beef cows	LIMx & Luing	Straw with brewers grain or silage	2012
	Beef finishing study	CHx & Luing	Concentrate vs. Mixed	2012
	Beef cows with calves	AAx & LIMx	Silage	2013
	Beef finishing study	CHx & Luing	Conc. vs. Mixed (3 treatments / diet)	2013
	Beef finishing study	AAx & LIMx Mixed (4 treatments / diet)		2014
	Beef finishing study	LIMx	Concentrate vs. Mixed	2016
	Beef finishing study	LIMx	Mixed	2015-2017
	Beef finishing study	AAx, LIMx, Luing	Mixed	2017
Be	Beef finishing study	Dairy and beef	Silage (2 contrasting silages)	2017
	Beef finishing study	HFx	Mixed (2 treatments)	2018

Difficulties encountered

- Cost of recording: £500-1000 per animal
- Difficulty of sourcing the animals at the right age (seasonal calving patterns)
- Challenges in achieving good representation of the population for genetic evaluation (Al and natural service)
- Health issues of moving animals (from ringworm to BVD)

Biomarkers

Nitrogen isotopic fractionation

- 14N and 15N behave differently in the animal, so:
 - Urine is depleted in ¹⁵N relative to the diet
 - Milk and animal tissues are enriched in ¹⁵N relative to the diet

Ecologists use this to work out food chains

Nitrogen isotopic fractionation

Proxy for FCE

Δ¹⁵N (Delta-¹⁵N)

Wheadon et al., 2014; British Journal of Nutrition

Meta-analysis (38 diets)

Cantalapiedra-Hijar et al., 2018; Animal